
Software & Mobile Applications

Starter Kit

© 2023 RWBlackburn LLC (d.b.a. Blackburn Labs)
www.blackburnlabs.com

Printed in the United States - First Printed 2017 - Second Printed 2023

DISCLAIMER
The content provided in this document is intended solely for general information purposes, and
is provided with the understanding that the authors, contributors, and publishers are not herein
engaged in rendering professional advice or services. The practice of software and application
development is driven by site-specific circumstances, unique to each project. Consequently, any
use of this information should be done only in consultation with a qualified professional who can
take into account all relevant factors and desired outcomes. The information in these document
is released with reasonable care and attention. However, it is possible that some information in
this document is incomplete, incorrect, or inapplicable to particular circumstances or conditions.
The authors, contributors, and publishers do not accept liability for direct or indirect losses
resulting from using, relying or acting upon information in this document.

Rev 1.1.58

2

Contents
1. Common Project Roles
2. Scrum, Agile, and SDLCs
3. Development and Testing
4. User Interface Design & UX
5. Minimum Viable Product (MVP)
6. Team Structures
7. First or Next Steps

3

Welcome to the Starter Kit

The purpose of this document is to provide basic information on
some of the key concepts around developing a modern
application or software product.

Please keep in mind this is not intended to be a comprehensive
explanation of these topics. There is a great deal of in-depth
information, and this article doesn't cover all of it. However, the
hope is to give someone new to these concepts enough
information to get them started and to begin successfully
interacting with professionals in these fields.

We hope you find this helpful,

 The Blackburn Labs Team

4

5

Common Project Roles

Core Roles

6

Project Role Reference

User
This is any and all users of the software. When
evaluating who your users are, don’t forget to include
both internal (like administrators or support staff) as
well as external users (like customers).

Super-User
This is a subset of trusted and experienced users.
These users should be prepared to make a
significant time commitment to the project, and they
should be ready to act as representatives of all the
users. They will be involved in many steps of the
project, especially the User Acceptance Test (UAT),
which we will discuss later in this document. The
success of a project often hinges on having
knowledgeable and engaged super-users.

Programmer
These are the professionals who will be writing the
actual code of your app. Having experienced and
innovative programmers is critical to any software
project.

7

Designer
There are many types of designers, such as 3D
graphic artists, UI designers, and web designers.
Unfortunately, many underestimate the importance of
having the team’s designers engaged with the
programmers and with other members of the team on
a daily basis. This can be a huge mistake, leading to
software that not only looks amateurish but does not
function or flow for the users as expected.

QA Engineer/Tester
These people test the software and report bugs and
issues to the team. Sometimes these are dedicated
professionals known as quality assurance engineers.
Other projects might use other team members as
their testers. This depends on the process the team
decides to use. We will discuss this in more detail
later in this document.

Scrum Master/Agile Coach
An Agile Coach or Scrum Master is a facilitator who
helps teams adopt and improve Agile methodologies
by guiding them through the processes, practices,
and principles of Agile development. We will cover
the Agile methodology in more detail later in this
document.

Responsibility Assignment Matrix (RAM)
Who is responsible for, or contributes to, each phase or step of the project?
Clearly defining roles and responsibilities early in a project leads to success.
Try putting together a Responsibility Assignment Matrix (RAM) and getting it
signed by all the stakeholders. This may save your project later.

8

Project Sponsor
This is the person or organization who is funding the
project. Therefore, it’s obviously essential to have
them on board with any changes to the project and to
keep them informed on progress.

Architect
Most organizations have architects who are
responsible for ensuring the consistent use of
technology and the adherence to best practices
between the organization’s various applications. This
person may or may not be a part of the project team.

UX Engineer
UX (user experience) engineers will work to insure
the usability of the software. They achieve this
through many different techniques. We will describe
the UX process in more detail later in this document.
The UX engineer may be a part of your project or a
shared resource.

Ancillary Roles

Business Analyst (BA)
The BA will analyse the business’s processes,
documenting and defining them for the team. This is
especially important when replacing an existing
system or when augmenting a human-executed
process.

9

Project Manager (PM)
A PM is responsible for keeping the project on track
and making sure the project team and stakeholders
are well informed on the progress and status of the
project.

Auditor
Depending on the project and organization, you may
also have auditors. These are the people who will
validate the software is compliant with any legal or
organizational requirements, such as Sarbanes Oxley
laws or government accessibility requirements.

Subject Matter Expert (SME)
It is important to identify any SMEs related to your
project. These are the people who are experts on the
topic(s) the software is augmenting or affecting.

Ancillary Roles

Change Control Board (CCB)
For larger projects, it is often a good idea to form a Change
Control Board. This group is in charge of deciding and approving
major changes to the project. If you are following Agile/Scrum,
this can be simplified to the product owner.

Scrum, Agile, and SDLCs

Contributor
Doug Hopkins
Agile Coach

10

The two most common software development processes:

11

Software Development
Life-Cycle (SDLC)

Iterative (Agile): Adopted as far back as the
70s, Agile is the process which is now
generally considered the industry best
practice for software development. This
process takes a far more iterative approach
to software development.

Waterfall: A legacy process, though it often
seems to fit better into other non-software
project processes. In this process, the team
gathers all requirements up front, before
beginning any development. This causes a
great deal of rework when requirements
evolve throughout the development process
and can hinder many development best
practices.

12

Iterative vs. Waterfall (Adaptive vs. Predictive)
Unlike Waterfall development, Agile projects have a fixed schedule
and resources while the scope varies. Teams deliver high-quality,
tested increments of work, meeting its own definition of “done” and
progress towards its highest priority goals.

Software Development
Life-Cycle (SDLC)

13

Agile Vision

“We are uncovering better ways
of developing software by doing it and

helping others do it.”

 www.agilemanifesto.org

Organization
High-performing teams are passionate, self-organizing,
cross-functional, and guided by the values identified in the
Manifesto for Agile Software Development.

● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan

While there is value in the items on the right, we value the items
on the left more.

Agile has been around for a long time and has its roots in the
Lean methodology. Agile is a methodology in itself, but there are
also different variations to this, including the very popular Scrum
and Kanban methodologies.

Though a vast oversimplification, this is a brief history of these
key methods:

14

Agile Frameworks & Tools

Scrum: Scrum is an Agile software development framework that was inspired by "The
New New Product Development Game," a 1986 Harvard Business Review article by
Takeuchi and Nonaka that described a flexible, holistic approach to product development.
The authors used the game of rugby as a metaphor for the process, which involves small,
cross-functional teams working together in short iterations or sprints to deliver a
potentially shippable product. Jeff Sutherland and Ken Schwaber, who created Scrum in
the early 1990s, drew on these principles to develop a framework that has since become
widely used in software development and beyond.
Kanban: Kanban is a visual framework for managing software development that
emphasizes the flow of work and limits work in progress. Its origins are in the Toyota
Production System, where it was used in manufacturing to improve efficiency and reduce
waste. In software development, Kanban helps teams manage their workflow by
visualizing the status of work items and ensuring that work is delivered continuously and
on demand.

15

Development & Testing

YOUR USERS

User Interface (UI)
Front-Office

Server/Middleware
Back-Office

Database

Technology Stack

CONTENT

When it comes to client
software and mobile
applications, technology
can be grouped into
three layers:

1. Database
2. Server/Middleware
3. User Interface

16

Database
The Database stores the
content of your software.

There are many kind of databases, but three you are
most likely to run into with typical applications are:

1. Transactional Database
This is usually in the form of a relational database.
Common technologies used here include MySQL,
Oracle, Sybase, and Microsoft SQL Server.

2. Data Warehouse
This stores data for larger queries, such as
reporting. This can also be in the form of relational
database, as seen above, but most recently there
have been many “big data” databases gaining
usage. These can be especially helpful in
applications that require extremely large sets of
data. Common technologies here include
Hadoop, SAP HANA, and Oracle in-memory DB,
among many other emerging technologies.

3. Cache Database
Sometimes even the most highly-tuned
transactional DB cannot keep up with very high
volumes, or attempting to do so would create a
burden on your servers. In these cases, an app
may need to leverage a caching DB, often
referred to as NoSQL databases. There are
hundreds of options here depending on your
needs and what is being stored. However, one of
the most common technologies used here is
Redis. If done properly, something like Hadoop
can be used for this as well.

17

Back-Office
The back-office, or server,
delivers up all the content along
with handling other business
functions.

Depending on your application’s structure, the
back-office may handle many functions. Some of the
most common servers that do this are Tomcat, PHP,
Node.JS, and .Net. Some of the most common functions
include the following:

1. Deliver UI
For a mobile or web application, the server is
responsible for delivering the UI itself. Often, this
takes the form of HTML5 but can also be done
using other UI technologies. There are many
servers, some of the most common are Apache
and IIS.

2. Deliver Content
Your application will need to display content in the
UI. For example, an email client will have a UI the
user interacts with, and within that UI is content
(the emails). This content is typically delivered to
the UI using Web Services. Web Services come in
two flavors, REST and SOAP. The Web Service can
deliver the content in many formats, such as JSON,
HTML, or XML.

3. Handle Security
Most applications limit user access in some way.
The server typically handles user authentication
and authorization.

4. Offline Processes
Some applications also need to handle offline
processes, like parsing and migrating files, ETL
(extract, transform, and loading data) processes,
data compression, or any other process a user will
not want to sit and wait for.

18

Front-Office
The front-office, or user interface
(UI), is the piece of software the
user interacts with.

For most applications, there are two main UI
approaches:

1. Native App
This means the UI was written in code and
compiled specific to a client. For Android devices,
this means Java. For iOS, this means
Objective-C/Switch. If you create a Windows app,
then C# will likely be your choice. Native apps
offer tighter device integration and better
performance, but porting to multiple devices may
prove to be costly.

2. Web App
A relatively new approach to creating applications
is to use JavaScript/HTML/CSS3 and a framework
such as Cordova to package the application for
multiple platforms. Since the application is not
“native” and therefore relies on a middleman to
communicate with the device, you may have
performance issues or find it difficult to interact
with specific hardware features consistently. This
can be a great approach for some types of
applications. However, you may also find it difficult
to make your app feel like an app instead of an
advanced website.

There are also some technologies that allow you to
program in one language but compile what is effectively
a native app to achieve the best of both worlds.

19

A key element to a successful software project
is efficient and well-coordinated test processes.

Everyone in the project contributes to testing in
one way or another. However, there are a few
methods and types of testing we will focus on
here.

20

Testing and QA

Testing Methods
Dedicated Testers: A common, and slightly more traditional
method of testing your software is to have dedicated testers, QA
engineers. These are professional testers experienced with
special automated testing software and trained on how to log
efficient bug reports.

Hybrid Testers: Some development processes, such as Kanban,
or for smaller teams, using hybrid testers is the better approach.
In this scenario, your team members, such as your programmers
or designers, also serve as the testers. This can be done as an
inline part of your process or on a rotating schedule.

The method you use will depend on the team
culture, project size, and development process.

21

● Unit Testing: This is testing the software on its lowest level -
testing each building block of the software independently.
Regardless of the method of testing used, this is typically
done by the programmers, as the unit tests are usually
written in code and executed alongside the program’s code
as a part of the development process.

○ TDD/BDD: There are specific development techniques called Test
Driven Development (TDD) and Behavior Driven Development (BDD)
which unit testing plays a critical role in. Embracing and enforcing these
techniques can vastly improve the stability of your software.

● Integration Testing: This is the testing of the software
functionality, once all the code is put together and compiled.
This can be as simple as opening the program and checking
that it runs, or as formal as documented “test scripts” that
testers follow.

○ Ideally, any bugs/issues will be logged with steps to reproduce the bug.
These steps are then used after the bug is fixed to insure the issue was
resolved as a part of the integration testing.

○ Each system requirement, or user story, can act as a miniature ad hoc
integration test script.

22

Types of Testing

22

Continuous Integration System
There are systems available that will automatically run your unit
tests and integration tests after every code change and report
results to the team. Such a valuable system is highly
recommended for any software project.

● Regression Testing: Regression testing is similar to
integration testing, in that it tests the functionality. However,
in this case one is testing the system as a whole, not just the
elements that have been changed or fixed. In fact, the
integration tests are often saved to become regression tests
in the future. This is essential to ensure that changes made
don’t have unexpected consequences or that old bugs do
not resurface. There are two types of regression testing.

○ Manual: Done by the QA engineers/testers.
○ Automated: Programed by a QA engineer, and automatically executed

by the Continuous Integration System.

● Compliance Testing: This will vary, depending on your
software, needs, and industry.

○ Penetration Testing (PenTest): This tests your system for security
breaches. ISO/IEC 27000 is a common compliance standard for this,
though there are many others. If needed, there is specialized software
that can assist in this testing.

○ Load Testing: This tests that your software and hardware can sustain
the anticipated load (traffic, I/O, etc.). If needed, there is specialized
software, such as JMeter, that can assist in this testing.

○ Government Compliance: There are many government standards that
may apply to your software, such as Sarbanes Oxley (SOX), Section
508, HIPAA, and many others. This is where your project auditors will
come into play.

23

Types of Testing

23

● User Acceptance Testing (UAT): UAT is a special testing
done by actual users of the system, usually the
predesignated super-users, as well as key stakeholders, to
confirm the delivery of the product itself. This acceptance is
often an official milestone of a project and is commonly built
into the project’s SoW/development contract.

This testing may take place throughout the development
cycle, or it may happen at pre-designated intervals in the
project. This will depend on your development process,
organization culture, and user availability. However, the
more frequently this is done, and the earlier in the project it
is done, the better.

For web-based software there is often a dedicated server
set aside for this activity that receives software deployments
at appropriate times. This helps keep your UAT team from
testing against the development code, which can often be
unstable.

24

Types of Testing

24

Contributor
Jason Bowden
Design & UX Leader

25

User Interface Design & UX

26

Two letters that when put together create a term so nebulous
that a Google search yields 142 million results packed with
words like user experience design, user interface design,
user interface engineering, usability engineering, front-end
engineering, information architecture, human-computer
interaction, content strategy, customer experience,
prototyping, lean UX, user research, usability, and even
service design. There are also a fairly ridiculous number of
acronyms around: UX, UXD, UED, XD, UI, IA, IXD, CX, HCI,
SC, SX, and UCD. I’m sure I’ve missed some. Anyway, here’s
a graph:

UX is….

27

Let me clear some of this up for you:
UX is all of this. Good UX designers understand
research, content strategy, navigation, user
interface conventions, branding, copywriting,
interaction design, and even visual design. It all
falls under the umbrella of UX.

Visual Design

Copywriting

Interaction Design

Research

Branding

Usability

Interface Conventions

Content Strategy

Don’t get me wrong, to us practitioners, these
terms are nowhere near interchangeable. But
there is an area of shared focus across each and
every one of these disciplines: users.

A common definition of UX is …

This is important because without knowing our
users, we can’t know if we’re building the right
product for them. The Apple app store has over
a million apps in it, many of which never gain
any traction because they fail to address their
user’s problems. Why? They have no idea what
their user’s problems are!

28

“the process of enhancing user satisfaction
by improving the usability, accessibility, and

pleasure provided in the interaction
between the user and the product”

Now that I’ve overly-established the idea that
UX is focused on users, I’ll say that in actuality,
solving the user’s problem is only half of it. The
other half of the equation is that businesses
operate to make a profit and/or save money.

So, how do you marry these two possibly
opposing goals?

The answer of course, is UX. Addressing both
sides of the equation engages and delights
users, which in turn increases engagement,
which in turn grows profit and/or saves money.
As I said, this is what all companies are in
business to do. Sounds great right?

29

The whole equation

As I mentioned, we start with users, learning about them, learning from
them, observing them and asking questions. We also learn about
business objectives, existing technology decisions, budgets, and
deadlines. All of this informs a strategy (the first and most important of
the 5 planes of UX). As we learn about our users, we build personas —
archetypal documents with demographic information, fictional names,
and even representational pictures — so our development teams know
exactly who we’re building our product for, what their goals are, and
even what they like and dislike. We also create a plan that includes
metrics, to incorporate right up-front our business goals and what it will
mean to achieve them.

Next, we can get to the root of the problem. Defining the problem is
key, and our personas will inform that problem definition. Once the
problem is fully understood, we can start thinking about solutions. We
develop customer journeys, user flows, sketches, and wireframes.
Notice we’ve done a bunch of work but no designs have been seen and
no code has been written. Yet.

This is counter to the way many projects are worked on, but getting to
design too early (before knowing your users) is the biggest pitfall to
avoid! It’s like building a house without knowing how many bedrooms
you need. It’s creates rework, expands project scope, and wastes time
and money.

Once we get a good idea of the user’s problem and we start designing
solutions, it’s time to validate our hypotheses. This is done through
usability testing: show users your app and watch them use it. Ask them
to complete tasks and track if they can do it or not. Once you are
confident your app is usable, THEN you start creating polished visual
design on the UI (aka user interface) — the actual screens that users will
interact with.

During this final design (called surface in the 5 planes of UX), UX
designers will use their expertise of interaction design to make sure the
product is intuitive and beautiful.

30

So, how do we do this?

1

2

3

4

31

Now that you’ve completed this iterative
process, you have a tested, validated, and
well-designed product that you know your users
need and can use.

Time to ship your product!

32

Minimum Viable Product

If your project is creating any sort of product, be
it an app or a new data warehouse, defining
your minimum viable product (MVP) upfront can
be the key to success.

According to Eric Ries, who popularized MVP in
his book Lean Startup:

An MVP is a fast and safe way to vet and refine a
product in contrast to conventional methods of
product development, which require significant
ramp-up, capital, and resource utilization.

33

Minimum Viable Product

“The minimum viable product is that
version of a new product which allows a
team to collect the maximum amount of
validated learning about customers with
the least effort.”

- Eric Ries

www.BlackburnLabs.comPrepared by Blackburn Labs

Minimum Viable Product

In the cupcake model of a minimum viable product, we start with
a smaller yet complete product. It has the appeal of a complete
cake such as taste, icing, filling, etc. However, its production
costs are much lower.

Why a Minimum Viable Product?

An MVP will be used to measure and to learn in a cost effective
way:

● This will provide a feedback loop that will allow us to iterate
over the product’s development. This will improve it over
time, as well as refine the marketing and sales messaging.

● This kind of learning, which is based on trying out an idea
and validating its effect, is called validated learning.

● This is repeated until considerable insights are gained and a
complete product is released.

34

www.BlackburnLabs.comPrepared by Blackburn Labs

Why MVP?
The Lean Startup Methodology encourages us to focus on
releasing a product in the context of the build-measure-learn
feedback loop:

The initial step is to learn what the real-world problem you are
solving is and what led to the initial idea.

● This idea can be used to build a minimum viable product,
which is not a perfect product but imitates the ultimate
functionality of the product.

● This gives you something to observe and measure, leading
to more data, which you can learn from, to generate new
ideas and build a better product.

35

www.BlackburnLabs.comPrepared by Blackburn Labs

What real-world problem
 are we solving?

36

First Step...
To start our software project, we need to determine the
real-world problem we are solving, come up with an initial idea to
address it, and identify the minimum viable product that will
allow us to launch and test our solution.

What is the initial idea
that solves this?

What is our minimum
viable product?

37

Team Structures

Robert Blackburn
Technology Thought Leader

Now that we have looked at the roles and
technologies and have explored some of the
topics and techniques unique to software
development, let's have a look at the common
ways software development teams structure
themselves.

38

Software Development Teams

Many software efforts will form their programmers and other
contributors into “squads.” The core of most squads will be the
programmers themselves, usually lead by a senior programmer
or team leader.

The makeup of squads is often specific to the organization's
needs and the nature of the product. For example, an
organization that needs to focus extensively on ISO 2700
compliance (like a security company) may assign dedicated
security auditors to each squad.

Agile Squad (Team)

39

1x Senior Programer/Team Leader

2-4x Programers

Don’t Forget, each squad member can also
double as a tester.

Development Squad

Squads in Large Organizations

40

Squad 1 Squad 2 Squad ...n

Product /
Feature

Product /
Feature

Product /
Feature

For larger products or organizations, there will be multiple
squads. Each squad can be assigned to a product, or for larger
efforts, even to specific features or components within a product.

The squads can also be rotated to new products/features, when
appropriate, to help with knowledge sharing.

Shared Resources

41

Squad 1 Squad 2 Squad ...n

Shared
Resources

Product /
Feature

Product /
Feature

Product /
Feature

There are also other roles that would typically be shared across the squads.
Examples of these can be, but are not limited to:

● UI Designers
● UX Engineers
● BAs
● Agile Coaches
● Architects
● Auditors
● QA Engineers

As mentioned before, sometimes an
organization may find the demand for
one of these shared roles to be high
enough to warrant assigning dedicated
members to each squad.

External Resources

42

Squad 1 Squad 2 Squad ...n

Shared
Resources

Product /
Feature

Product /
Feature

Product /
Feature

Each project typically also has many external roles involved in
the development of the product, including the project sponsors,
the PMs, SMEs, and super-users:

43

First or Next Steps...

Next Steps

Project Kickoff:
○ Determine project’s overall scope
○ Identify the MVP
○ Identify team members, special roles and

stakeholders
○ Create Business Requirements Document (BRD)

Create Project Collateral:
○ Statement of Work (SoW)
○ Wireframes
○ Project plan

Build Initial Prototype or MVP

44

1

2

3

The initial steps to a project are often:

45

Project Kick-Off Checklist
❏ Determine Overall Project Scope:

❏ What is in scope/out of scope?
❏ Resource constraints (skill sets, telecommuting options, etc.)
❏ Budget, time and resource limits or targets.

❏ Identify the MVP:
❏ What is the minimum viable product (MVP)?
❏ What features and functionality are essential for the MVP?
❏ What can be deferred until later iterations?
❏ What are the risks associated with the MVP?
❏ What business questions do we expect the MVP to answer?

❏ Identify team members, special roles and
stakeholders:
❏ Who are the team members, and what are their roles?
❏ Who are the stakeholders, and what are their roles?
❏ Who will be responsible for making decisions?

❏ Create Business Requirements Document (BRD):
❏ Identify the objectives, goals and success criteria.
❏ Outline the project timeline, milestones and deliverables.
❏ Describe the technical architecture and infrastructure.
❏ Describe the user experience and interface design.
❏ Define the testing and quality assurance process.
❏ Describe the deployment process.

45

www.BlackburnLabs.com
info@blackburnlabs.com

401.515.5115

It’s Time to Get Started!
Schedule Your Kick-Off Meeting Today

Create Project Collateral
After the kick-off meeting(s), you are ready to
create the necessary collateral to begin your
project.

Examples of common collateral are:

● Wireframe
● Mockups
● Prototypes
● Technical Design (UML, ERDs,...)
● Statement of Work (SoW)

47

Wireframes
 vs Mockups
 vs Prototypes

People often confuse the difference between wireframes, mockups, and
prototypes.

WIREFRAME MOCKUP PROTOTYPE

Each of these documents help describe the user interface, UX, and flow
of your app. However, each has a different focus and purpose.

48

Wireframes
 vs Mockups
 vs Prototypes

Wireframes: Wireframes are lightweight “line drawings” of key screens
of your app. You can use many different tools to do this. Popular tools are
LucidChart or MockFlow. However, simply using Google Slides or plain
old pen & paper is often just as effective. Whatever you are most
comfortable with and can work with the most fluidly.

Don’t try to wireframe all screens, just the important ones. Just like the
test scripts, it is also better to get an initial draft of the wireframe to the
team and stakeholders quickly to start gathering feedback.

Mockups: As you gather feedback, itr may become clear you need a
more detailed visual than a wireframe. This is when you may want to
create a mockup or work with the team’s designer to make a mockup.
Tools like MockFlow can also be great for mockups, but often graphic
editing tools like Photoshop or Gimp are used for this.

Prototype: Sometimes a new feature is doing something so unique, we
need a prototype to effectively understand it or verify our approach to it.

What is a wireframe?
A wireframe is an unstylized graphical
representation of the different states or pages of
your system, site, and/or app.

● This can be as simple as a line drawing on a napkin, but it
can be as sophisticated as an interactive drawing.

○ Even static line drawing wireframes can be placed into a flowchart-like
diagram to show the user flow within the app.

○ For examples of interactive wireframes: https://mockflow.com/samples

● The intent is to keep these simple and to avoid getting
bogged down in the aesthetic details.

○ Because we are avoiding writing code or pixel-perfect design mockups,
we can change the wireframes more freely, allowing for more fluid and
responsive design discussions.

○ It is far cheaper and faster to change a wireframe then to redo mockups
or update code in a prototype.

49

What is a wireframe?
● Wireframes can then be used as the basis for

the next steps:
○ Gives a graphic designer or UX engineer an idea of the

overall flow, allowing them to select only key pages to
mockup instead of mocking up the entire app.

○ Gives developers a big-picture view of the app,
allowing them to make better architectural decisions
and more easily break up tasks.

● Wireframes can even be used to show to
potential investors or stakeholders, to
encourage buy-in, or simply to show
progress.

50

Compiling all the material from the kick-off meeting, and all the
material generated as a follow-up to the kick-off, the
development team will typically create one or more statements
of work (SoW) options for consideration by the product owner or
business sponsors.

The document may include some of the following elements:

● Primary Use Cases
● In Scope/Out of Scope
● Outstanding Questions
● Cost/Resource Estimates
● Key Deliverables/Milestones

51

Statement of Work (S0W)

www.BlackburnLabs.comPrepared by Blackburn Labs 52

Do not over document!
It can be easy to fall into the trap of trying to
document every aspect of the product or
application. This is often wasted effort.

The goal at this stage of the project is
to document enough to allow the team
to get started, and no more.

This can be difficult when obligations need to be
made and contracts for resources signed.

● You’ll need to collaborate closely with your contracting firm
to generate just enough documentation that all parties are
confident the correct product will be built to everyone’s
satisfaction.

This is why finding the right partner is so
important.

www.BlackburnLabs.comPrepared by Blackburn Labs 53

Notes:

www.BlackburnLabs.comPrepared by Blackburn Labs 54

Notes:

www.BlackburnLabs.comPrepared by Blackburn Labs 55

About Blackburn Labs

This document was prepared by the staff, and
partners, of Blackburn Labs.

At Blackburn Labs, we have committed, motivated, and experienced
programmers, architects and process specialists. As an award-winning software
designer and creator, Robert and his team have the uncanny ability to provide
solutions to address a client’s business, application, or software engineering
needs with leading-edge technical skills and valuable business experience.

Robert W. Blackburn
CEO & CTO

Have a look at the full list of solutions,
technologies, and processes we use everyday
to solve clients’ software architecting, building,
and maintenance needs on our website:

www.BlackburnLabs.com

Feel free to contact us to set up a consultation:

info@blackburnlabs.com

401-515-5115

www.BlackburnLabs.comPrepared by Blackburn Labs

info@blackburnlabs.com

401.515.5115

© 2023 RWBlackburn LLC (d.b.a. Blackburn Labs)

